POLYPRENOLS FROM CONIFERS: MULTIPLICITY IN CHAIN LENGTH DISTRIBUTION

K IBATA, A KAGEYU, T TAKIGAWA, M OKADA, T NISHIDA, M MIZUNO and Y TANAKA*

Central Research Laboratories, Kuraray Co Ltd, Sakazu, Kurashiki, Okayama 710, Japan, *Faculty of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184, Japan

(Received 9 March 1984)

Key Word Index—Cryptomeria japonica, Metasequoia glyptostroboides, Taxodiaceae, Sciadopitys verticillata, Sciadopitydaceae, Chamaecyparis obtusa, Juniperus chinensis, J rigida, Cupressaceae, Araucaria brasiliana, Araucariaceae, Podocarpus macrophylla, P Nagi, Podocarpaceae, Cephalotaxus harringtonia, Cephalotaxaceae, Taxus cuspidata, Torreya nucifera, Taxaceae, polyprenols, ¹³C NMR, characterization

Abstract—Long-chain betulaprenols have been isolated from the leaves of twelve coniferous plants, which can be roughly classified into two categories with respect to the pattern of the chain length distribution A complex distribution pattern with two maxima has been found in six of them for the first time

INTRODUCTION

Betulaprenols are polyprenols in which two transisoprene residues are linked to an ω-terminal dimethylallyl group and various numbers (1) of cis-isoprene residues are successively linked to the trans-isoprene units (1, i = 2) Short chain betulaprenols are found in small amounts in the woody tissue of Betula verrucosa (betulaprenols-6 to -9 (j = 3 to 6), 0.03% wet wt) [1] and the cells of the bacterium Lactobacillus plantarum (bactoprenol-11 (j = 8), 0 004 % wet wt) [2] Quite recently, however, it has been found that the leaves of Ginkgo biloba [3] and the needles of pine trees [4] produce long-chain homologues (j = 8 to 20) of betulaprenols in fairly high yield (up to 08% of wet wt, or 2% of dry wt) Ficaprenols, in which three trans-isoprene residues are linked to the ω -terminal residue (1, i = 3) [5] have been found predominantly in angiosperms [1, 6-11] The presence of betulaprenols in gymnosperms and ficaprenols in angiosperms is of chemotaxonomic interest and led us to investigate further the occurrence of betulaprenols in other plants in the subdivision Gymnospermae

RESULTS AND DISCUSSION

The leaves (or needles) of twelve plants of the order Coniferales were taken for analysis (Table 1) The plants were identified by Professor S Kuroyanagi, Faculty of Agriculture, Okayama University, who used the classification of Sporne [12]

$$ω$$
 - residue trans cis cis ($α$) - residue

Table 1 Content of polyprenols and the degree of acetylation

Plants	Total polyprenols (% of dry leaf wt)	Acetylated (% of total polyprenols)
Cryptomeria japonica	11	50
Metasequota glyptostroboides	02	~100
Sciadopitys verticillata	14	*
Chamaecyparis obtusa	10	85
Juniperus chinensis	0 5	40
J rigida	11	25
Araucaria brasiliana	11	*
Podocarpus macrophylla	23	45
P nagi	21	90
Cephalotaxus harringtonia subsp nana	02	~100
Taxus cuspidata	16	55
Torreya nucifera	0.5	~100

^{*}Polyprenyl acetate fraction was not separately examined, since the raw lipid extract was immediately subjected to saponification before purification

Structural characterization

The polyprenois were present in the leaves (or needles) of the twelve plants as free alcohols or their acetates (Table 1) Hence, the structure determinations of the polyprenois were done for either form, depending on the relative contents in the leaves and other circumstances. The total numbers (n = i + j + 1) of isoprene residues were determined by FDMS of the components of each polyprenyl mixture listed in Table 3. The IR spectra of the polyprenois (free or acetylated) were in good agreement with previously reported ones [7]

The ¹H NMR spectra (Table 2) of individual free and acetylated polyprenols were also in good agreement with those reported [3, 4] As the signals at δ 1 60, 1 68 and 1 74

2518 K IBATA et al

Table 2 Relative peak intensities of methyl 1H NMR and C-1 methylene 13C NMR signals in polyprenols (free or acetylated) from conifers

			Me ¹H	Me ¹ H NMR signals	nals		C-1 13C	C-1 13C NMR signals	s
Plants	Free (Fr) or acetylated (Ac)	Number of soprene units	1 60 trans and trans (ω)	1 68 crs and crs (w)	1 74 cis (a)	32 01 trans-cis	32 24 cıs–cıs	32 41 cis-cis (a)	39 74 trans-trans and w-trans
Сгурготеги јарописа	Ac	177	28	142	11	12	118	12	18
M glyptostroboides	Ac	{ 18 { 21	31	150	10	10	128	14	18
S verticillata	Ŗ	1	31	139	Ξ;	60	131	*	20
Chamaecyparis obtusa	Ac	{ 1 2 1 2 1 2 1	30	14 I 18 0	110	12	157	12	19
J chinensis	F	18	3.1	150	60	13	136	*	22
J rigida	F	17	3.1	138	11	60	130	*	2.1
A brasiliana	Ħ	{ 16 { 23	33 32	12 6 19 8	10	12	190	*	19
P macrophylla	F	{ 16 { 23	33	129 197	111	10	190	•	20
P nagi	Fr	23	3.2	199	10	14	184	*	2.2
Cephalotaxus harringtonia									
subsp nana	Ϋ́	18	3.1	148	11	11	12.5	12	2.1
Taxus cuspidata	Ac	{ 18 { 21	31 32	148	12	80	13.2	12	19
Torreye nucifera	УC	18	3.1	150	60	10	13.1	10	19

*The signal for cis-cis(a) is overlapped on the signal for cis-cis in free polyprenols

are due to the methyl protons of isoprene residues in various configurations, then the relative peak areas of these signals can be used for the estimation of the numbers of cis- and trans-isoprene units in the molecule [3, 4] If a polyprenol (free or acetylated) molecule with a total number of isoprene units of n has two internal trans units and a cis- α -terminal unit, then the relative peak areas normalized for the total number of methyl groups will be 3(n-3) 1 This was the case for all the polyprenols (free or acetylated) listed in Table 1 within experimental error

The 13 C NMR spectra of free and acetylated polyprenols were identical with those previously reported [3, 4], except for the relative intensities of the peaks (Table 2) The peaks around δ 32 0–32 5 and 39 7 were assigned to the C-1* atoms and were conveniently used for the determination of the sequence structure of cis and trans-isoprene units (Table 2) No peak at δ 40 0 due to the C-1 atom in cis-trans linkage was present. The experimental values for the relative peak areas for C-1 were in good

*Numbering system is as follows -C(1)-C(2)=C(3)-C(4)-

C(5)

agreement with the theoretical ones based on the structure 1 (i = 2).

From these results, it was concluded that all the coniferous polyprenols (free or acetylated) examined have the same cis and trans alignments as those from G biloba [3] and pine trees [4], ie long-chain betulaprenols with an average number of isoprene units (\overline{n}) ranging from 15 to 24

Chain length distribution

In Table 3 and Fig 1 are shown the chain length distribution patterns of the polyprenyl mixtures from the twelve conifers Figure 1 also includes the patterns of the other gymnosperms reported in the literature. The distribution patterns of the native polyprenyl mixtures in the forms of free alcohols and acetates, from the same plant, were in good agreement with each other (Table 3), the latter being unaltered by saponification as exemplified in the case of *Taxus cuspidata*. These findings strongly indicate that each of the pairs of alcohols and acetates share a common biogenetic precursor

As shown in Fig 1, two maxima were observed in

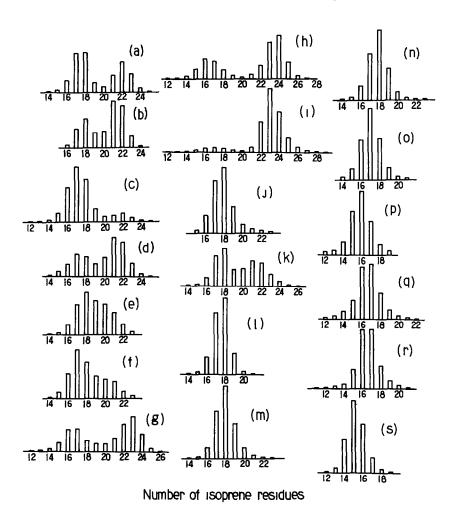


Fig 1 Chain length distribution patterns of polyprenols from (a) Cryptomeria japonica, (b) M glyptostroboides, (c) S verticillata, (d) Chamaecyparis obtusa, (e) J chinensis, (f) J rigida, (g) A brasiliana, (h) P macrophylla, (i) P nagi, (j) Cephalotaxus harringtonia subsp nana, (k) Taxus cuspidata, (l) Torreya nucifera, (m) G biloba [3], (n) Cedrus deodara [4], (o) Pinus strobus [4], (p) P sylvestris [4], (q) P densiflora [4], (r) P thunbergii [4], and (s) Picea abies [4]

Table 3 Chain length distribution of polyprenols (free or acetylated)

	Free(Fr) or							Сошр	ositior	Composition (% wt)	⊡						
Plants	acetylated (Ac)	n = 13	14	15	16	17	18	19	20	21	22	23	24	25	56	77	88
	Fr	1	0.5	11	49	17.7	219	7.5	43	100	167	109	35	10	1		ı
Cryptomeria japonica	∀ Vc	1	90	14	99	215	219	56	31	94	165	102	56	0.5	1	I	l
M alvptostroboides	Ψc	ļ		١	17	101	157	83	06	252	226	64	10	1	l	I	1
S verticillata	Fr*	0.5	11	20	187	30 1	23 0	73	29	35	4 5	22	60	04	1		
	Fr.	i	1	15	98	103	86	79	12.7	22.5	17.7	74	30	17	1	ļ	1
Chamaecyparis obtusa	, Ac	l	0.5	29	67	121	108	10	106	21 5	188	7.1	16	04	i	1	1
	Fr	1	2.5	41	72	165	209	168	138	66	49	36		١	1	1	1
J chinensis	Ac	1	02	10	54	163	228	184	165	120	57	17	1	1	I		١
	Fr	1	20	55	152	268	189	111	96	79	2.5	90	1	1	1	1	1
J rigida	, Ac	I	90	32	131	265	198	120	102	91	39	16		1	Ì	1	1
A brasiliana	Fr*	0.5	14	47	120	122	9	45	4 5	7.5	150	192	86	21	90	1	
P macrophylla	Frt	04	1.5	52	108	9 5	49	20	10	23	7.1	199	23.7	91	20	90	
P nagi	Frt	03	90	12	21	25	21	13	60	27	166	347	22 1	80	30	12	90
Cephalotaxus harringtonia																	
subsp nana	Ac	l		17	94	283	356	145	49	56	18	12		1		1	1
	∫ A c	1	0.5	10	46	165	208	93	86	140	12.7	69	29	10	03	l	1
I axus cuspiaata	Frt		03	80	4 2	158	206	104	100	13.7	124	73	30	13		1	1
Torreya nucifera	Υc	l	90	14	93	334	415	1117	17	0.5	1	ŀ	1	١	1		1

*Total polyprenols obtained from unfractionated mixture by saponification † Polyprenols obtained from polyprenyl acetate fraction by saponification

respect of the chain length distribution for six plants Cryptomeria japonica, M glyptostroboides, Chamaecyparis obtusa, A brasiliana, P macrophylla and Taxus cuspidata This is the first time that this type of distribution pattern has been observed for a polyprenyl mixture of plant origin That this distribution pattern is truly composed of a series of polyprenol homologues is substantiated by the fact that the NMR analysis showed that the two typical components in a series have the same generic structure 1 (i = 2) (cf Table 2) A typical simple distribution with one maximum as in Pinaceae species [4] and G biloba [3] was observed in two cases Cephalotaxus harringtonia subsp nana and Torreya nucifera Deformed patterns were observed in the other four cases either one of the two maxima was very small (S verticillata and P nagi), or the two maxima overlapped each other (J chinensis and J rigida)

The above multiplicity in chain length distribution is not directly related with taxonomy, since the distribution patterns are quite different between *Chamaecyparis* obtusa and *J chinensis* or *J rigida*, all of which belong to the family Cupressaceae and between *Taxus cuspidata* and *Torreya nucifera* of the family Taxaceae

Although there is considerable variety in the complex distribution patterns, the maximum positions, ie the number (\bar{n}) of isoprene units in each principal component of the two maxima in each complex distribution, are roughly constant $\bar{n}=16-18$ and $\bar{n}=21-24$ It is noteworthy that for all of the simple distributions in Fig 1 $\bar{n}=15-18$, which is nearly equal to that for the maximum with shorter chain lengths in the complex distribution

EXPERIMENTAL

Isolation and purification of polyprenols and polyprenyl acetates The leaves (or needles) of Cryptomeria japonica D Don and M glyptostroboides Hu et Cheng were collected in June, those of Chamaecyparis obtusa Endl in October, those of Torreya nucifera Sieb et Zucc in November, those of J chinensis L and J rigida Sieb et Zucc in February, and those of Taxus cuspidata Sieb et Zucc, Cephalotaxus harringtonia K Koch subsp nana (Nakai) Kitagawa, P macrophylla D Don, P nagi Zoll et Moritz ex Zoll and A brasiliana A Rich in April in Okayama prefecture, Japan The leaves of S verticillata Sieb et Zucc were collected in April in Wakayama prefecture, Japan The leaves were dried and extracted by maceration with ca 10-fold

amount (v/w) of Me_2CO -n-hexane (1 1) for about a month, after which the residual leaf material was re-extracted by homogenization with ca 5-fold amount (v/w) of the same solvent mixture of 5 min. The extracts were then purified and separated into individual homologues of polyprenols or polyprenyl acetates by the method described in our previous paper [3]. The total polyprenol contents of dry leaves and the percentages of acetylated polyprenols are listed in Table 1. It should be noted that these concentrations do not necessarily correspond to the maximum ones obtainable from the leaves, since it is now known that the amounts of polyprenyl compounds contained in leaves are subject to age-dependent seasonal variations [3, 4, 6]

Spectroscopy MS JEOL JMS D-300 GC/MS, ¹H and ¹³C NMR spectra 200 MHz and 50 1 MHz, respectively, using a JEOL FX-200 spectrometer, CDCl₃ with TMS as an int standard at room temp (about 35°) A pulse repetition time 7-15 sec (45° pulse) was applied for the ¹³C NMR measurements

Acknowledgement—The authors are grateful to Professor S Kuroyanagi, Okayama University, for the leaf samples

REFERENCES

- 1 Wellburn, A R and Hemming, F W (1966) Nature (London) 212, 1364
- 2 Gough, D P, Kirby, A L, Richards, J B and Hemming, F W (1970) Biochem J 118, 167
- 3 Ibata, K, Mizuno, M, Takigawa, T and Tanaka, Y (1983) Biochem J 213, 305
- 4 Ibata, K, Mizuno, M, Tanaka, Y and Kageyu, A (1984) Phytochemistry 23, 783
- 5 Tanaka, Y and Takagi, M (1979) Biochem J 183, 163
- 6 Wellburn, A R and Hemming, F W (1966) Phytochemistry 5, 969
- 7 Wellburn, A R, Stevenson, J, Hemming, F W and Morton, R A (1967) Biochem. J 102, 313
- 8 Stone, K J, Wellburn, A R, Hemming, F W and Pennock, J F (1967) Biochem J 102, 325
- 9 Suga, T., Shishibori, T., Kosela, S., Tanaka, Y. and Itoh, M. (1975) Chem. Letters 771
- 10 Suga, T (1982) Proceedings of the 18th Symposium on Phytochemsitry, Kyoto, Japan, pp 11-20
- 11 Sasak, W and Chojnacki, T (1973) Acta Biochim Pol 20, 343
- 12 Sporne, K R (1965) in *The Morphology of Gymnosperms* Hutchinson University Library Press, London